Npj Comput. Mater. : 揭示溶液中的压电催化机理:量子-连续介质-电化学方法

压电催化是一种在机械波(如超声波)作用下将机械能转化为化学能的耦合过程。在众多压电催化反应中,压电催化水分解因其可产生活性氧物种(如过氧化氢、羟基自由基OH•和超氧自由基O2−·)而备受关注,尤其在无创医疗领域展现出巨大潜力。例如,实验研究表明,通过压电催化产生的这些活性物质可高效杀伤肿瘤细胞,且相比传统化疗、手术切除和放疗等方案,其副作用显著降低。然而,压电催化反应大多发生在液相环境中,其机理研究长期受限于固液界面相互作用的复杂性。目前主流的理论模拟方法主要包括两类理论模型:既能带理论和屏蔽电荷效应模型。前者仅关注应力作用下的体相能带结构的倾斜效应,认为压电催化剂的氧化还原电势来源于能带倾斜后的电子激发,与光催化类似,但却没有考虑溶液与催化剂的相互作用;后者基于连续介质静电模型,虽能描述压电催化剂在溶液中的宏观极化行为,却完全忽视催化剂的电子结构和表面化学特性。因此,这两种方法均无法在原子和电子结构尺度上揭示压电催化活性的起源,限制了高效压电催化剂的设计与优化。


图片

Fig. 1 | Mechanism of piezocatalysis is described by different methods.


基于连续溶剂化模型的第一性原理电子结构计算被广泛用于电化学界面的模拟,可用于研究带电表面与溶液的相互作用。受此启发,来自南京理工大学物理学院湛诚教授和阚二军教授课题组,针对压电催化体系首次提出量子-连续介质-电化学(QCE)模型,并以钛酸钡(BaTiO3, BTO)为例,系统揭示了溶液中压电催化的普适机制。该研究通过第一性原理计算,系统研究了压电催化剂在溶液环境中的电子结构、极化行为及表面氧化还原特性,实现了材料特性与溶液性质对催化活性的定量关联。


图片

Fig. 2 | Effects of mechanical strain on the energy and polarization of BTO in vacuum and solution.


基于QCE方法的模拟结果表明,溶液环境显著增强了BTO在应变下的极化响应,从而提升了机械能的吸收效率。研究进一步发现,BTO在溶液中的偶极矩与材料厚度和溶剂的介电常数呈线性正相关,其中溶剂的介电屏蔽效应主导了BTO-溶液界面的相互作用,而离子屏蔽效应则处于次要地位。此外,课题组揭示了沿极化方向价带顶的线性位移现象,并精确计算了BTO表面的氧化还原电位,直接阐明了溶液中压电催化的氧化还原反应机制。基于该方法,模拟预测了BTO的氧化还原活性与其几何尺寸及溶剂性质的依赖关系。研究发现,通过减小BTO厚度并选用极性较低的溶剂,能够显著增强压电催化效率。更重要的是,水溶液体系中实现压电催化水分解的BTO最小临界厚度为3.5 nm,这一厚度远低于当前实验报道的纳米尺度材料,为超薄压电催化剂的设计提供了理论依据。


图片

Fig. 3 | Enhancement of polarization by solution on the BTO surface.


该研究突破了传统能带理论与电荷屏蔽理论的局限性,首次在电子结构层面实现了压电催化剂在溶液中氧化还原电位的直接计算,为高效压电催化剂的理性设计提供了全新的理论框架与预测工具。该文近期发表于npj ComputationaMaterials  11,252(2025)英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。


Understanding piezocatalysis of barium titanate in solution from quantum-continuum-electrochemical theory


Xiangyu Zhu, Cheng Zhan & Erjun Kan 


Piezocatalysis has shown great potential in non-invasive medical treatment and pollutant removal. Since piezocatalysis usually occurs in solution, capturing the effect of the solution is essential in mechanistic study. However, conventional theoretical methods cannot handle the interaction between the solution and the piezocatalysts, which leads to a huge discrepancy between the simulated scenarios and the actual working condition of piezocatalysis. Here, we first propose the quantum-continuum-electrochemical (QCE) method to elucidate the general mechanism of piezocatalysis in solution. Taking barium titanate (BaTiO3, BTO) as an example, our QCE method can directly calculate the redox potential of the piezocatalyst and quantitatively predict of how material and solution properties modulate piezocatalytic activity. Our work provides a brand-new theoretical framework to dissect the piezocatalysis in solution, which not only advances the mechanistic understanding of piezocatalysis but also brings guidance to the experimental design of piezocatalysts for non-invasive medical treatment.


图片