吸烟对心血管健康的有害影响,特别是动脉粥样硬化和血栓形成,已经得到了很好的证实,更详细的机制也在不断出现。作为吸烟不良影响的基本病理生理学,内皮功能障碍、炎症和血栓形成被认为尤为重要。香烟烟雾诱导内皮功能障碍,导致血管扩张和止血调节受损。导致内皮功能障碍的因素包括一氧化氮生物利用度降低、超氧阴离子水平升高和内皮素释放。血管壁的慢性炎症是吸烟诱导动脉粥样硬化的核心发病机制。吸烟会全身性升高炎症标志物,并诱导各种组织中黏附分子和细胞因子的表达。模式识别受体和损伤相关分子模式在吸烟诱导炎症的机制中起着至关重要的作用。吸烟诱导的DNA损伤和先天免疫的激活,如NLRP3炎性体、环GMP-AMP合酶(cGAS)-干扰素基因刺激物(STING)途径和Toll样受体9,被证明可以增强炎症细胞因子的表达。香烟烟雾诱导的氧化应激和炎症通过上调黏附分子影响血小板黏附、聚集和凝血。此外,它还会影响凝血级联和纤溶平衡,导致血栓形成。基质金属蛋白酶导致斑块易损性和动脉粥样硬化血栓形成事件。吸烟对炎性细胞和黏附分子的影响进一步加剧了动脉粥样硬化血栓形成的风险。总的来说,暴露于香烟烟雾对内皮功能、炎症和血栓形成有深远的影响,导致动脉粥样硬化和动脉粥样硬化血栓性心血管疾病的发展和进展。了解这些复杂的机制突显了戒烟以保护心血管健康的迫切需要。这项全面的综述调查了吸烟导致这些危及生命的疾病的多方面机制。
参考文献
1) Messner B, Bernhard D: Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early
atherogenesis. Arterioscler Thromb Vasc Biol, 2014; 34:509-515
2) Lavi S, Prasad A, Yang EH, Mathew V, Simari RD, Rihal CS, Lerman LO, Lerman A: Smoking is associated with
epicardial coronary endothelial dysfunction and elevated white blood cell count in patients with chest pain and
early coronary artery disease. Circulation, 2007; 115:2621-2627
3) Barbieri SS, Zacchi E, Amadio P, Gianellini S, Mussoni L,Weksler BB, Tremoli E: Cytokines present in smokers’
serum interact with smoke components to enhance endothelial dysfunction. Cardiovasc Res, 2011; 90: 475-483
4) Sampilvanjil A, Karasawa T, Yamada N, Komada T,Higashi T, Baatarjav C, Watanabe S, Kamata R, Ohno N,Takahashi M: Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 2020; 318: H508-h518
5) Ueda K, Sakai C, Ishida T, Morita K, Kobayashi Y,Horikoshi Y, Baba A, Okazaki Y, Yoshizumi M, Tashiro S,Ishida M: Cigarette smoke induces mitochondrial DNA damage and activates cGAS-STING pathway: application to a biomarker for atherosclerosis. Clin Sci (Lond), 2023;137: 163-180
6) Wang H, Chen H, Fu Y, Liu M, Zhang J, Han S, Tian Y,Hou H, Hu Q: Effects of Smoking on Inflammatory-Related Cytokine Levels in Human Serum. Molecules,2022; 27
7) Hussein BJ, Atallah HN, AL-Dahhan NAA: Salivary levels of Interleukin-6, Interleukin-8 and Tumor Necrosis Factor-alpha in Smokers Aged 35-46 Years with Dental Caries Disease. Medico Legal Update, 2020; 20: 1464-1470
8) Jefferis BJ, Lowe GD, Welsh P, Rumley A, Lawlor DA,Ebrahim S, Carson C, Doig M, Feyerabend C, McMeekin L, Wannamethee SG, Cook DG, Whincup PH:Secondhand smoke (SHS) exposure is associated with circulating markers of inflammation and endothelial function in adult men and women. Atherosclerosis, 2010;208: 550-556
9) Bernhard D, Csordas A, Henderson B, Rossmann A,Kind M, Wick G: Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. Faseb j,2005; 19: 1096-1107
10) Sundar IK, Chung S, Hwang JW, Lapek JD, Jr., Bulger M, Friedman AE, Yao H, Davie JR, Rahman I: Mitogen-and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-κ B-dependent genes. PLoS One, 2012; 7: e31378
11) Hansson GK, Libby P, Schönbeck U, Yan ZQ: Innate and adaptive immunity in the pathogenesis of atherosclerosis.Circ Res, 2002; 91: 281-291
12) Ishida M, Sakai C, Ishida T: Role of DNA damage in the pathogenesis of atherosclerosis. J Cardiol, 2023; 81: 331-336
13) Shaw AC, Goldstein DR, Montgomery RR: Age-dependent dysregulation of innate immunity. Nat Rev Immunol, 2013; 13: 875-887
14) Takeuchi O, Akira S: Pattern recognition receptors and inflammation. Cell, 2010; 140: 805-820
15) Roshan MH, Tambo A, Pace NP: The Role of TLR2,TLR4, and TLR9 in the Pathogenesis of Atherosclerosis.Int J Inflam, 2016; 2016: 1532832
16) Miggin SM, O’Neill LA: New insights into the regulation of TLR signaling. J Leukoc Biol, 2006; 80: 220-226
17) Banchereau J, Pascual V: Type I interferon in systemic lupus erythematosus and other autoimmune diseases.Immunity, 2006; 25: 383-392
18) Ma C, Ouyang Q, Huang Z, Chen X, Lin Y, Hu W, Lin L: Toll-Like Receptor 9 Inactivation Alleviated Atherosclerotic Progression and Inhibited Macrophage Polarized to M1 Phenotype in ApoE-/- Mice. Dis Markers, 2015; 2015: 909572
19) Krogmann AO, Lüsebrink E, Steinmetz M, Asdonk T,Lahrmann C, Lütjohann D, Nickenig G, Zimmer S:Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice. PLoS One, 2016; 11: e0146326
20) Li J, Huynh L, Cornwell WD, Tang MS, Simborio H,Huang J, Kosmider B, Rogers TJ, Zhao H, Steinberg MB,Thu Thi Le L, Zhang L, Pham K, Liu C, Wang H:Electronic Cigarettes Induce Mitochondrial DNA Damage and Trigger TLR9 (Toll-Like Receptor 9)-Mediated Atherosclerosis. Arterioscler Thromb Vasc Biol, 2021; 41: 839-853
21) Takahashi M: NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res, 2022; 118: 372-385
22) Swanson KV, Deng M, Ting JP: The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 2019; 19: 477-489
23) Kumari P, Russo AJ, Shivcharan S, Rathinam VA: AIM2 in health and disease: Inflammasome and beyond.Immunol Rev, 2020; 297: 83-95
24) Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E: NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010; 464:1357-1361
25) Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Hida S, Sagara J, Taniguchi S, Takahashi M: Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun, 2012; 425: 162-168
26) Hendrikx T, Jeurissen ML, van Gorp PJ, Gijbels MJ,Walenbergh SM, Houben T, van Gorp R, Pöttgens CC,Stienstra R, Netea MG, Hofker MH, Donners MM,Shiri-Sverdlov R: Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in Ldlr(-/-) mice. Febs j, 2015; 282: 2327-2338
27) Paulin N, Viola JR, Maas SL, de Jong R, Fernandes-Alnemri T, Weber C, Drechsler M, Döring Y, Soehnlein O: Double-Strand DNA Sensing Aim2 Inflammasome Regulates Atherosclerotic Plaque Vulnerability.Circulation, 2018; 138: 321-323
28) Pan J, Han L, Guo J, Wang X, Liu D, Tian J, Zhang M,An F: AIM2 accelerates the atherosclerotic plaque progressions in ApoE-/- mice. Biochem Biophys Res Commun, 2018; 498: 487-494
29) Mehta S, Dhawan V: Exposure of cigarette smoke condensate activates NLRP3 inflammasome in THP-1 cells in a stage-specific manner: An underlying role of innate immunity in atherosclerosis. Cell Signal, 2020; 72:109645
30) Yao Y, Mao J, Xu S, Zhao L, Long L, Chen L, Li D, Lu S:Rosmarinic acid inhibits nicotine-induced C-reactive protein generation by inhibiting NLRP3 inflammasome activation in smooth muscle cells. J Cell Physiol, 2019;234: 1758-1767
31) Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, Lin Y, Bai X,Liu X, Chen X, Yang H, Xu C, Zhang Y, Yang B:Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis,2018; 9: 171
32) Mehta S, Vijayvergiya R, Dhawan V: Activation of NLRP3 inflammasome assembly is associated with smoking status of patients with coronary artery disease.Int Immunopharmacol, 2020; 87: 106820
33) Hong Z, Ma T, Liu X, Wang C: cGAS-STING pathway:post-translational modifications and functions in sterile inflammatory diseases. Febs j, 2022; 289: 6187-6208
34) Pham PT, Fukuda D, Nishimoto S, Kim-Kaneyama JR,Lei XF, Takahashi Y, Sato T, Tanaka K, Suto K, Kawabata Y, Yamaguchi K, Yagi S, Kusunose K, Yamada H, Soeki T,Wakatsuki T, Shimada K, Kanematsu Y, Takagi Y,Shimabukuro M, Setou M, Barber GN, Sata M: STING,a cytosolic DNA sensor, plays a critical role in atherogenesis: a link between innate immunity and chronic inflammation caused by lifestyle-related diseases.Eur Heart J, 2021; 42: 4336-4348
35) Kobayashi Y, Sakai C, Ishida T, Nagata M, Nakano Y,Ishida M: Mitochondrial DNA is a key driver in cigarette smoke extract-induced IL-6 expression. Hypertens Res,2023; doi: 10.1038/s41440-023-01463-z. ePub ahead of Print
36) Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X, Liu NF:Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis, 2022; 13: 467
37) Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P, Xiong Y: Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov, 2021; 7: 193
38) Wen Q, Liu J, Kang R, Zhou B, Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res
Commun, 2019; 510: 278-283
39) Moschonas IC, Tselepis AD: The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis.
Atherosclerosis, 2019; 288: 9-16
40) Hidalgo A, Libby P, Soehnlein O, Aramburu IV,Papayannopoulos V, Silvestre-Roig C: Neutrophil extracellular traps: from physiology to pathology.Cardiovasc Res, 2022; 118: 2737-2753
41) Sano M, Maejima Y, Nakagama S, Shiheido-Watanabe Y,Tamura N, Hirao K, Isobe M, Sasano T: Neutrophil extracellular traps-mediated Beclin-1 suppression aggravates atherosclerosis by inhibiting macrophage autophagy. Front Cell Dev Biol, 2022; 10: 876147
郑刚 教授
•现任泰达国际心血管病医院特聘专家,济兴医院副院长