划重点
01谷歌的研究人员成功实现了量子纠错的重要突破,将逻辑量子比特出错率降低到物理量子比特出错率之下。
02该研究利用表面码技术,克服了量子纠错中的困难,实现了大规模容错量子算法的运行要求。
03随着量子比特数量的增加,计算错误成倍减少,为量子计算机的实用化前景打开了大门。
04然而,量子计算机仍面临诸多挑战,如量子比特扩展、量子纠错本身以及控制要求等。
05尽管如此,这一研究表明通用容错量子计算是可行的,为未来量子计算机的发展奠定了基础。
以上内容由腾讯混元大模型生成,仅供参考
导读:
瞿立建 | 撰文
要实现量子计算机的远大前景,一大挑战是量子比特太娇气,容易出错,而且量子比特数量越多,越容易出现错误。
美国时间12月9日,谷歌(Google)量子人工智能的研究人员联合多个合作伙伴《自然》杂志发表论文,展示了在量子纠错方面取得的重要突破:利用最新的量子芯片柳木(Willow),实现了超出量子纠错的“盈亏平衡点”的纠错能力。并且,随着量子比特数量的增多,计算错误成倍减少。[1]
“我们的结果表明,如果进行扩展,设备性能可以实现大规模容错量子算法的运行要求。”该论文写道。
加州理工学院的理论物理学家John Preskill 表示,纠错可以延长量子比特存储信息的时间,“这是一个值得注意的里程碑”[2]。
谷歌此次使用的量子纠错方法是一种叫做表面码的技术。长期致力于量子计算的中国科学技术大学教授陆朝阳告诉《赛先生》:“这是第一次通过表面码方法突破了量子纠错的‘盈亏点’:从之前的‘越纠越错’,进步到‘越纠越对’,纠错之后的‘逻辑比特’比单个“‘物理比特’质量更好了。”
接收信号 | 解码 |
000 | 0 (无错) |
001 | 0 |
010 | 0 |
100 | 0 |
111 | 1 (无错) |
110 | 1 |
101 | 1 |
011 | 1 |
上面表格中,左列3个比特称为物理比特,这3个物理比特所等效为右列的1个比特,这个比特称为逻辑比特。
量子纠错码与之类似,用若干物理量子比特来编码出1个逻辑比特。不同的是,由于单个量子比特出错概率较高,因此,一个量子逻辑比特需要用更多的物理比特。比如说,按上表,3个物理比特组合成1个逻辑比特,如果有两个物理比特出错,逻辑比特将给出错误的值。用5个物理比特组合为1个逻辑比特,这可以容忍两个物理比特同时出错。
经典计算机增加比特是很容易的,但量子计算机每增加一个比特都极为不易。而且,量子比特越多,出的错也越多,结果会造成新出的错比要纠的错还多。
另外,怪异的量子性质为量子纠错带来更多困难,比如我们无法复制量子比特的量子态,不可直接测量量子比特以检查是否存在错误,因为测量本身就会使量子比特的状态发生变化。
“所有的量子比特,所有的操作,都是不完美的,用不完美去纠正不完美,需要超过一定的纠错’阈值”,做到极致的操纵水平,才能达到‘越纠越对’,不然就是‘越帮越忙’。”陆朝阳解释说。
量子纠错的概念最早在1996年由数学家彼得·秀尔(Peter Shor)提出,只要错误发生的概率低于某个阈值,量子比特的不完美操作甚至错误就可以得到纠正。后来,俄裔美国物理学家阿列克谢·基塔耶夫基于拓扑理论,发明了一种叫做表面码的技术[3]。将物理比特组合出两个重叠的网格,第一个网格中的量子比特叫做“数据”量子比特,它们共同组合成逻辑量子比特。第二个网格中的量子比特叫做“测量”量子比特,用于测量某些物理量来间接探查错误,且不干扰物理量子比特的量子态。
理论学家们继续深入表面码的研究。2006年,两位研究人员确认表面码可以使量子计算的容错阈值从此前的0.01%提高到1%,从此量子计算的实用化前景一下子打开了[4]。
表面码网格示意图,黄色为数据量子比特,其他颜色为测量量子比特。图源:Google Research
谷歌继续改进硬件。谷歌宣布将悬铃木量子芯片升级为柳木芯片,有105个量子比特,并做了3X3、5X5和7X7三种网格,发现网格每增大一步,错误率减小一半,即错误率虽网格增大而指数衰减。
更重要的是,谷歌将逻辑量子比特出错率降低到物理量子比特出错率之下,即突破了纠错的“盈亏平衡点”。
“这项研究展示了量子纠错码确实能极大压制错误,实验中纠错码的码距从5提升到7,每层错误率大约下降为原来的二分之一。他们还进一步测试了码距29的纠错码,错误率进一步下降到10^-10量级。这意味着容错量子计算的实验可行性得到验证。”北京理工大学物理学院量子技术研究中心准聘教授尹璋琦评论道。
表面码越大,逻辑量子比特出错概率越小。图源:Nature, 2024
参考资料:
1.Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature (2024). https://doi.org/10.1038/s41586-024-08449-y
2.https://physics.aps.org/articles/v17/176
3.A. Yu. Kitaev, “Quantum error correction with imperfect gates,” in Proceedings of the Third International Conference on Quantum Communication and Measurement, ed.O. Hirota, A. S. Holevo, and C. M. Caves (New York,Plenum, 1997).
4. https://arxiv.org/abs/quant-ph/0610082
5.Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023). https://doi.org/10.1038/s41586-022-05434-1
本文2024年12月11日发表于微信公众号 赛先生 (谷歌发布新量子芯片,实现量子纠错的重要一步),风云之声获授权转载。
■ 扩展阅读
风云之声
科学 · 爱国 · 价值