欢迎关注下方公众号阿宝1990,本公众号专注于自动驾驶和智能座舱,每天给你一篇汽车干货,我们始于车,但不止于车。
电驱动系统的扭矩控制: 电动车中使用的电动机能够在极短时间内提供和调整扭矩。这种高响应速度使得电驱动系统可以迅速调节驱动力输出,从而在车辆进入漂移状态时提供精确的动力分配。
动力分配系统: 电动车使用的动力分配系统,能够独立控制各车轮的动力输出。这使得车辆在漂移中能够灵活调节不同车轮的扭矩,以实现平衡车身和保持车尾的滑移状态。
高级稳定性控制: 电动车中的电子稳定程序(ESC)在漂移模式下会调整为适度介入或完全关闭,以减少对车辆动力输出的限制。通过调整系统算法,驾驶者可在漂移中拥有更多自由操作空间,但仍在特定情况下维持车辆稳定。
智能传感器与实时数据反馈:为了保持车辆在漂移时的可控性,车辆配备了轮速传感器、加速度计、陀螺仪等传感器。这些传感器实时收集数据并通过控制单元进行处理。控制系统在漂移过程中分析这些数据,以便及时调节动力分配和车身姿态。
软件算法与扭矩矢量控制:漂移模式依赖于复杂的软件算法,这些算法用于扭矩矢量控制系统来分配动力输出。电动车能够根据传感器的实时数据快速调整每个车轮的动力,帮助驾驶员在漂移中保持控制。某些车辆甚至允许用户通过车内系统调节漂移设定,如动力分配的比例、稳定性辅助强度等。
电动四轮驱动(AWD):许多高性能电动车采用双电机或多电机配置,以实现全轮驱动。AWD系统在漂移模式下允许车辆灵活地分配前后轴的动力输出,使驾驶员可以通过调节油门和方向盘来完成漂移动作。
即时扭矩响应:电动车电机在低转速时即可提供最大扭矩,并且响应速度远超内燃机。通过瞬时调整电机扭矩,漂移时的动力调节更为流畅精确。
高精度动力分配:多电机配置和电子控制系统使得每个车轮的动力分配更加精准,可以在车辆高速侧滑时确保抓地力和车辆稳定。
高安全性:电动车的漂移功能可通过多重传感器数据,结合ESC等系统,确保驾驶员在享受漂移的同时,保持一定的安全性和可控性。
轮胎磨损:漂移会加剧轮胎的磨损,尤其在漂移功能频繁使用时,轮胎的寿命将大幅缩短。电动车漂移的高扭矩输出对轮胎的抓地力提出更高要求,轮胎的耐用性成为需要解决的问题。
电池管理和热管理:电动车漂移功能需要高扭矩输出,对电池和电机的热管理提出更高要求。长时间漂移可能会导致电池快速耗电、温度升高,影响电池寿命和性能。
控制系统复杂性:电动车漂移需要在高负载条件下对扭矩和抓地力进行精准控制,因此控制系统的算法开发难度较高,需要大量的测试和调优。
接收油门踏板、制动踏板、方向盘等信号。
油门踏板:指示驱动系统输出驱动力大小。
制动踏板:指示制动系统输出制动力大小。
方向盘:指示车辆转向方向和角度。
根据预设算法判断是否进入漂移控制状态。
控制轮端制动装置输出制动力,实现制动和漂移控制。
可选配漂移按键,方便驾驶员启动和结束自动漂移模式。
位于每个车轮处,用于向刹车盘输出制动力。
可以输出不同大小的制动力,也可以输出相同大小的制动力。 由中央控制器指示需要输出的制动力。
制动力控制:中央控制器控制后轮对应的轮端制动装置输出的制动力增大,使后轮失去抓地力,实现漂移。
动态调整:在漂移过程中,根据方向盘转角、路面附着系数、后轮载荷等因素动态调整制动力目标值。
稳定性控制:当转向角度增大至漂移阈值时,控制外侧车轮对应的轮端制动装置输出制动力,恢复车身稳态。
漂移结束:当转向角度大于等于漂移阈值或驾驶员操作结束时,退出漂移控制,恢复正常的制动控制。
电子稳定控制系统 (ESP):在漂移过程中关闭 ESP,以避免 ESP 干扰漂移控制。
提前结束漂移:驾驶员可通过增大油门踏板开度、制动踏板开度或反打方向盘来提前结束自动漂移。
系统响应:中央控制器检测到驾驶员干预后,退出自动漂移控制,恢复正常制动和动力输出。
安全性:
关闭ESP:在漂移过程中关闭ESP等电子稳定控制系统,避免影响漂移效果。
开启ESP:当转向角度达到漂移阈值或驾驶员操作结束漂移时,重新开启ESP,提高车辆稳定性。
查看原图 77K