AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
论文链接: https://arxiv.org/pdf/2411.18623
论文标题:Lift3D Foundation Policy: Lifting 2D Large-Scale Pretrained Models for Robust3D Robotic Manipulation
项目主页: https://lift3d-web.github.io/
代码链接: https://github.com/PKU-HMI-Lab/LIFT3D
我们提出了 Lift3D,通过系统地改进隐式和显式的 3D 机器人表示,将 2D 大规模预训练模型提升为鲁棒的 3D 操纵策略模型。
对于隐式 3D 机器人表示,我们设计了一种任务感知 MAE(Mask Autoencoder)自监督方法,它对任务相关的可操作区域进行掩蔽,并重建深度几何信息,从而增强 2D 基础模型的 3D 空间认知。
对于显式 3D 机器人表示,我们提出了一种 2D 基础模型 lifting 策略,利用 2D 基础模型的预训练位置编码(PE)来编码 3D 点云数据,用于 3D 操纵模仿学习。