为了解决上述难题,上海交通大学朱晨教授、孙浩副教授联合青岛农业大学王先津教授,基于前期发展的官能团迁移自由基聚合策略(Group Transfer Radical Polymerization, Sci. Adv. 2024, 10, eadp7385),再次创新性地提出选择性远程氢原子/官能团转移策略,成功实现α-烯烃的自由基均聚反应,制备出多种具有不同极性基团的乙烯基聚合物。该研究不仅突破了α-烯烃难以进行自由基聚合的传统观念,同时构建了多种具有明确结构序列的全碳链聚烯烃。相关成果以“Switchable Radical Polymerization of α-Olefins via Remote Hydrogen Atom or Group Transfer for Enhanced Battery Performance”为题发表在期刊Angew. Chem. Int. Ed.上。
图1 乙烯基聚合物的制备
该工作通过新型聚合单体的设计,利用远程氢原子/官能团转移反应巧妙地避免了α-烯烃在自由基聚合条件下的退化链转移(degenerative transfer),成功合成了多种序列明确的官能化聚烯烃。1H NMR, COSY, HSQC, HMBC以及MALDI-TOF MS等数据结果确定了聚合物结构,同时动力学研究发现该策略是典型的自由基聚合过程。通过1,5-氢原子转移策略,不仅可以以百克规模得到聚合物,同时兼容氰基、酯基、磷脂基、酰胺基等多种官能团,实现具有AAB结构序列聚合物的构建;通过1,5-官能团转移策略可以合成具有ABC结构序列的聚合物,其中迁移基团包括氰基和苯并噻唑等。
图2 氢原子/官能团转移自由基聚合
研究人员还将合成的这种新型聚合物应用到无负极锂电池界面层中。研究结果表明,该策略所合成的聚合物中-CN基团和-COOR基团有效地增强了与锂离子的相互作用,实现了锂离子的均匀沉积和高效传输,提高了无负极锂金属电池的库伦效率、循环稳定性以及使用寿命。
图3 无负极锂金属电池界面层中的应用
总结:该研究通过选择性远程氢原子/官能团转移策略,克服了α-烯烃及其衍生物在自由基聚合条件下的链转移过程,成功实现其均聚反应。同时构建出AAB和ABC两种序列明确的全碳链聚烯烃,为官能化聚烯烃的合成提供了新的途径。此外,所合成的材料应用在无负极锂金属电池界面层中,有效提高了电池性能,展示出在储能应用方面的潜能。
全文链接:
https://doi.org/10.1002/anie.202418350