《世界科学》联合“澎湃新闻”平台,在上海市科学技术委员会资助下,共同策划“走近科学”栏目,对获得国家及上海市科技奖励的成果进行科普化报道。本文围绕2022年国家自然科学奖一等奖项目“稀土近红外发光探针可控合成、性能调控及生物应用基础研究”展开,该项目由复旦大学化学系教授张凡领衔完成。
稀土发现的漫长之旅
随着工业提纯和冶炼技术的发展,科学家从这种“钇土”中相继发现了镱、铒、铽等稀土元素。同样地,在发现“钇土”9年后的1803年,瑞典化学家伯采利乌(J. J. Berzelius)和他的老师黑新格尔(W. Hisinger)发现了“铈土”。后来,又从中分离出镧、镨、钕等稀土元素。
就这样,直到1947年美国人马林斯克(J. A. Marinsky)和他的同事在原子反应堆铀废料中分离出最后一个稀土元素钷,才算完成了17种稀土元素的全部发展史,前后共经历了153年。
随着稀土元素相继被发现,稀土分离纯化技术也在不断进步,稀土元素才开始在各个领域中崭露头角。
稀土发光材料
稀土元素的发光特性主要来源于其未填满的4f电子轨道内的电子跃迁,在这里,稀土离子呈现出不同的电子跃迁形式和极其丰富的能级跃迁。而可以跃迁的通道通常存在于可见光和红外光区内,因此,稀土离子可以吸收或发射从紫外到红外区的多种波长的光而形成多种多样的发光材料。
此外,稀土元素通常具有微秒至毫秒量级的发光寿命,这使得它们能够与短寿命的背景荧光区分开来,适用于需要持久发光的应用中,例如光存储材料和持久荧光标记。
稀土元素的特异光学特性为新型光学材料和器件的开发提供了丰富的资源。进入21世纪,稀土发光材料被广泛应用于新型显示技术(如LED和OLED),稀土掺杂的纳米颗粒也由于其独特的光学性能被广泛用于生物成像和传感技术中。
稀土近红外发光探针
然而,由于稀土离子的吸收截面较小,且f-f轨道间跃迁存在被禁止的事实,一般稀土掺杂纳米粒子下转换发光效率较低,发展高灵敏度的荧光体系一直是稀土掺杂纳米粒子研究的重要内容,也是将稀土掺杂纳米探针应用在临床上的关键。
如张凡所说,稀土近红外发光探针就像一扇观察生物体内部的窗口,通过稀土纳米材料进行特异性标记后,即可自动定位到某个器官或某处组织,对特定生物组织进行精准检测,可以获取如肠道的蠕动、肿瘤细胞的游走、血管的分布等生物体动态信息。其即时性、高分辨率、无创等优势,为精准手术导航技术领域提供了较好的应用前景,有望成为一种新型的无创肿瘤病理诊断方法。稀土纳米材料与其他治疗手段(如光热疗法、光动力疗法、靶向药物递送等)结合,可能会为癌症等重大疾病提供全新的治疗策略。
链接:稀土元素是指元素周期表的镧系元素和钪、钇,共17种。由于该家族成员往往共生于自然界,局限于当时的科学技术水平,人们发现的稀土矿物很少,多是像土一样的氧化物,所以称之为稀土。
稀土元素未填满的4f轨道使其具有无可取代且独特的光学和磁学性质。稀土有着广泛的应用,从最初被用来制造汽灯纱罩、打火石等,到传统冶金,再到现代的计算机信息技术、光电器件、新能源以及生物医学领域,它逐渐被定位为现代发展高科技产业必需的“战略元素”。
-本文作者孔娜是上海科技大学助理研究员,主要从事功能纳米材料在生物医学中的应用研究-