海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
有机太阳能电池(OSC)具有重量轻、成本低和灵活性强等特点,已成为一种前景广阔的绿色能源技术。尤其是基于A-DA’D-A型非富勒烯受体(如Y6)的器件取得了令人鼓舞的突破,其能量转化效率(PCE)达到18-19%。然而,发现高性能受体材料的过程仍然是耗时、昂贵、困难和低效的。因此,开发高效的筛选材料分子的方法是十分必要的。人工智能的方法为预测材料特性和筛选潜在的候选材料提供了可行的解决方案。通过从大规模数据集中提取隐藏信息,并以可接受的精度获得预测结果,机器学习方法在直接从分子结构中在发现高性能OSC材料方面显示出巨大的潜力。而与传统的浅层机器学习方法相比,具有多个隐藏层的深度学习方法可以通过结合大规模自监督预训练、使用更丰富的分子表征等手段在分子性质预测方面实现良好的准确性、泛化性及可迁移性。
Figure 1. Overview of DeepAcceptor.
来自中南大学化学化工学院的卢红梅教授团队,提出了一种基于深度学习的框架(DeepAcceptor),用于设计和发现高效的非富勒烯小分子受体材料。DeepAcceptor作为一款精确、超快的工具,具有极高的易用性和效率,可加快高性能非富勒烯受体材料的设计和发现。他们通过深度学习的方法设计和筛选有机太阳能电池受体材料,并通过实验进一步验证了三个筛选得到的候选分子,器件最佳的PCE达到了14.61%。他们提出了一种基于原子、化学键和连接信息的BERT模型(abcBERT)来预测PCE。该模型将BERT引入分子性质预测领域,并结合图神经网络(GNN)的优势,利用消息传递机制从分子图中提取有意义的表征。使用原子类型、键类型、键长度和邻接矩阵来表示分子。掩蔽分子图任务被用来以自监督预训练的方式从非富勒烯受体分子的分子图中学习表征。通过融入了更多的化学结构信息以及结合大规模的预训练,显著提升模型下游预测结果的准确性。该研究团队通过从收集文献中的受体数据构建了一个实验数据集,利用所收集的实验数据,对abcBERT模型进行了微调,用于预测受体分子的PCE。为了验证模型的有效性和可靠性,他们基于深度学习建立了一个分子生成和筛选过程,为PM6寻找新的高性能受体。对发现的三个候选分子进行了进一步的实验验证,所得器件PCE均超过了12%。实验和预测PCE之间的平均绝对误差为1.96%。为了方便使用,该研究团队还发布了用户友好的DeepAcceptor网络服务器,其中包括实验数据库、分子编辑器和PCE预测器,用户可以轻松使用,不需要任何硬件要求和编程基础。
Figure 2. The editable small molecule acceptor database, molecular designer and PCE predictors in the interface of DeepAcceptor. The PCE of designed molecules predicted by abcBERT and RF can be displayed in real time.
Accelerating the discovery of acceptor materials for organic solar cells by deep learning
Jinyu Sun, Dongxu Li, Jie Zou, Shaofeng Zhu, Cong Xu, Yingping Zou, Zhimin Zhang, Hongmei Lu
It is a time-consuming and costly process to develop affordable and high-performance organic photovoltaic materials. Computational methods are essential for accelerating the material discovery process by predicting power conversion efficiencies (PCE). In this study, we propose a deep learning-based framework (DeepAcceptor) to design and discover highly efficient small molecule acceptor materials. Specifically, an experimental dataset is constructed by collecting acceptor data from publications. Then, a deep learning-based model is customized to predict PCEs by applying graph representation learning to Bidirectional Encoder Representations from Transformers (BERT), with the atom, bond, and connection information in acceptor molecular structures as the input (abcBERT). The computational dataset derived from density functional theory (DFT) calculations and the experimental dataset from literature are used to pre-train and fine-tune the model, respectively. The abcBERT model outperforms other state-of-the-art models for the PCE prediction with MAE = 1.78 and R2 = 0.67 on the test set. A molecular generation and screening process is built to find new high-performance acceptors for PM6. Three discovered candidates are further validated by experiment, and the best PCE reaches 14.61%. The released user-friendly interface of DeepAcceptor greatly boosts the accessibility and efficiency of designing and discovering high-performance acceptors. Altogether, the DeepAcceptor framework with abcBERT is promising to predict the PCE and accelerate the discovery of high-performance acceptor materials.