近日,ECCV 2024 AIM Workshop大赛结果公布,在压缩视频质量评估赛道上,腾讯TVQA-C视频质量评估算法获得比赛冠军。未来,相关能力将在腾讯云媒体处理(MPS)产品中的落地,进一步提升产品全链路媒体质量监控与分析能力,帮助企业用户实现媒体质量升级。
比赛获奖证书
压缩视频质量评估标准
推动视频压缩场景的演进与创新
因此,准确的编码视频质量评估算法变得至关重要,一方面可以帮助编码器研发人员进行快速对比,提高迭代速度;另一方面,通过准确的编码视频质量评估算法,可以得到关于视频质量的直接反馈,帮助编码器的使用者理解不同编码设置对观看体验的实际影响,快速地将编码器用在不同的业务场景。
腾讯TVQA-C算法斩获第一
加速视频场景的突破与产业落地
具体从表中可看出,腾讯算法(TVQA-C)在SROCC指标上以0.0002的极小分差低于SJTU队伍,另外两个指标都以明显优势优于第二名,其中KROCC较第二名高0.0092,PLCC较第二名高0.0063,最终TVQA-C总成绩较之第二名高出0.0051,获得比赛冠军。
腾讯算法(TVQA-C)成绩
TVQA-C算法结构图
在损失函数方面,从上面的数据分析中可以知道,本次比赛数据集的主观分数是在小组内投票得到的,不同小组之间的主观分没有一致性,因此不能采用L1 Loss或L2 Loss这种直接拟合分数的损失函数,这会导致模型训练在训练过程中出现歧义。而基于排序的损失函数非常适合在这种场景中使用,最初使用SROCC Loss以及PLCC Loss作为损失函数,实验发现这两个损失函数会导致KROCC指标特别低,经过分析发现,SROCC和PLCC是基于整组数据得到的指标,而KROCC是基于组内数据成对观察值之间的一致性和不一致性的比例得到。为了优化KROCC指标,对预测的逆序对使用Pairwise-ranking loss进行优化,以此减少逆序对的数量,提高KROCC指标。因此最终使用的损失函数如下: